APPENDIX C

ASSEMBLER DIRECTIVES AND
NAMING RULES

OVERVIEW

This appendix consists of two sections. The first section
describes some of the most widely used directives in 80x86
Assembly language programming. In the second section
Assembly language rules and restrictions for names and labels
are discussed and a list of reserved words is provided.

739

SECTION C.1: x86 ASSEMBLER DIRECTIVES

Directives, or as they are sometimes called, pseudo-ops or pseudo-instructions,
are used by the assembler to translate Assembly language programs into machine lan-
guage. Unlike the microprocessor's instructions, directives do not generate any opcode;
therefore, no memory locations are occupied by directives in the final ready-to-run (exe)
version of the assembly program. To summarize, directives give directions to the assem-
bler program to tell it how to generate the machine code; instructions are assembled into
machine code to give directions to the CPU at execution time. The following are descrip-
tions of the some of the most widely used directives for the 80x86 assembler. They are
given in alphabetical order for ease of reference.

ASSUME

The ASSUME directive is used by the assembler to associate a given segment's
name with a segment register. This is needed for instructions that must compute an
address by combining an offset with a segment register. One ASSUME directive can be
used to associate all the segment registers. For example:

ASSUME CS:namel,DS:name2, SS:name3, ES:name4

where namel, name2, and so on, are the names of the segments. The same result
can be achieved by having one ASSUME for each register:

ASSUME CS:namel
ASSUME DS:name?2
ASSUME SS:name3
ASSUME ES:nothing
ASSUME nothing

The key word "nothing" can be used to cancel a previous ASSUME directive.
DB (Define Byte)

The DB directive is used to allocate memory in byte-sized increments. Look at
the following examples:

DATAL DB 23
DATA2 DB 45,97H,10000011B
DATA3 DB 'The planet Earth'

In DATAL a single byte is defined with initial value 23. DATA2 consists of sev-
eral values in decimal (45), hex (97H), and binary (10000011B). Finally, in DATA3, the
DB directive is used to define ASCII characters. The DB directive is normally used to
define ASCII data. In all the examples above, the address location for each value is
assigned by the assembler. We can assign a specific offset address by the use of the ORG
directive.

DD (Define Doubleword)

To allocate memory in 4-byte (32-bit) increments, the DD directive is used. Since
word-sized operands are 16 bits wide (2 bytes) in 80x86 assemblers, a doubleword is 4
bytes.

VALUE1 DD 4563F57H
RESULT DD ? ;RESERVE 4-BYTE LOCATION
DAT4 DD 25000000

It must be noted that the values defined using the DD directive are placed in mem-
ory by the assembler in low byte to low address and high byte to high address order. This
convention is referred to as little endian. For example, assuming that offset address 0020
is assigned to VALUEI in the example above, each byte will reside in memory as follows:

740

DS:20=(57)
DS:21=(3F)
DS:22=(56)
DS:23=(04)

DQ (Define Quadword)

To allocate memory in 8-byte increments, the DQ directive is used. In the 80x86
a word is defined as 2 bytes; therefore, a quadword is 8 bytes.

DAT 64B DO 5677DD4EE4FF45AH
DATS8 DO 10000000000000

DT (Define Tenbytes)

To allocate packed BCD data, 10 bytes at a time, the DT directive is used. This
is widely used for memory allocation associated with BCD numbers.

DATA DT 399977653419974

Notice there is no H for the hexadecimal identifier following the number. This is
a characteristic particular to the DT directive. In the case of other directives (DB, DW,
DD, DQ), a number with no H at the, is assumed to be in decimal and will be converted
to hex by the assembler. Remember that the little endian convention is used to place the
bytes in memory, with the least significant byte going to the low address and the most sig-
nificant byte to the high address. DT can also be used to allocate decimal data if "d" is
placed after the number:

DATA DT 65535d ;stores hex FFFF in a 10-byte
location

DUP (Duplicate)

The DUP directive can be used to duplicate a set of data a certain number of times
instead of having to write it over and over.

DATA1l DB 20 DUP (99) ;DUPLICATE 99 20 TIMES

DATA2 DW 6 DUP (5555H) ;DUPLICATE 5555H 6 TIMES

DATA3 DB 10 DUP (?) ;RESERVE 10 BYTES

DATA4 DB 5 DUP (5 DUP (0)) ;25 BYTES INITIALIZED TO ZERO
DATAS DB 10 DUP (00, FFH) ;20 BYTES ALTERNATE 00, FF

DW (Define Word)

To allocate memory in 2-byte (16-bit) increments, the DW directive is used. In
the 80x86 family, a word is defined as 16 bits.

DATAW 1 DW 5000
DATAW 2 DW TF6BH

Again, in terms of placing the bytes in memory the little endian convention is
used with the least significant byte going to the low address and the most significant byte
going to the high address.

END

Every program must have an entry point. To identify that entry point the assem-
bler relies on the END directive. The labels for the entry and end point must match.

HERE: MOV AX,DATASEG ;ENTRY POINT OF THE PROGRAM

END HERE ;EXIT POINT OF THE PROGRAM

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 741

If there are several modules, only one of them can have the entry point, and the
name of that entry point must be the same as the name for the END directive as shown
below:

;from the main program:
EXTRN PROGI1:NEAR

MAIN PRO: MOV AX,DATASG ; THE ENTRY POINT
MOV DS, AX

CALL PROGI
END MAIN PRO ;THE EXIT POINT

;from the module PROG1:
PUBLIC PROG1

PROG1 PROC

RET ;RETURN TO THE MAIN
MODULE
PROG1 ENDP

END ;NO LABEL IS GIVEN

Notice the following points about the above code:

1. The entry point must be identified by a name. In the example above the entry point
is identified by the name MAIN PRO.

2. The exit point must be identified by the same name given to the entry point,
MAIN_PRO.

3. Since a given program can have only one entry point and one exit point, all modules
called (either from main or from the submodules) must have directive END with
nothing after it.

ENDP (see the PROC directive)
ENDS (see the SEGMENT and STRUCT directives)
EQU (Equate)

To assign a fixed value to a name, one uses the EQU directive. The assembler will
replace each occurrence of the name with the value assigned to it.

FIX VALU EQU 1200
PORT A EQU 60H
COUNT EQU 100
MASK 1 EQU 00001111B

Unlike data directives such as DB, DW, and so on, EQU does not assign any
memory storage; therefore, it can be defined at any time and at any place, and can even
be used within the code segment.

EVEN

The EVEN directive forces memory allocation to start at an even address. This is
useful due to the fact that in 8086 and 286 microprocessors, accessing a 2-byte operand
located at an odd address takes extra time. The use of the EVEN directive directs the
assembler to assign an even address to the variable.

742

ORG 0020H

DATA 1 DB 34H
EVEN

DATA 2 DW 7TF5BH

The following shows the contents of memory locations:

DS:0020 = (34)
DS:0021 = (2)
DS:0022 = (5B)
DS:0023 = (7F)

Notice that the EVEN directive caused memory location DS:0021 to be bypassed,
and the value for DATA 2 is placed in memory starting with an even address.

EXTRN (External)

The EXTRN directive is used to indicate that certain variables and names used in
a module are defined by another module. In the absence of the EXTRN directive, the
assembler would search for the definition and give an error when it couldn't find it. The
format of this directive is

EXTRN namel:typea [,name2:typeb]

where type will be NEAR or FAR if name refers to a procedure, or will be BYTE,
WORD, DWORD, QWORD, TBYTE if name refers to a data variable.

;from the main program:
EXTRN PROG1:NEAR
PUBLIC DATAl

MAIN PRO MOV AX,DATASG ; THE ENTRY POINT
MOV DS, AX

CALL PROGI
END MAIN PRO ;THE EXIT POINT

;PROG1 is located in a different file:
EXTRN DATAl :WORD
PUBLIC PROGI1

PROG1 PROC

MOV BX, DATAL

RET ;RETURN TO THE MAIN MODULE
PROG1 ENDP
END

Notice that the EXTRN directive is used in the main procedure to identify PROG1
as a NEAR procedure. This is needed because PROGI1 is not defined in that module.
Correspondingly, PROG1 is defined as PUBLIC in the module where it is defined.
EXTRN is used in the PROGI1 module to declare that operand DATA1, of size WORD,
has been defined in another module. Correspondingly, DATA1 is declared as PUBLIC in
the calling module.

GROUP

The GROUP directive causes the named segments to be linked into the same 64K-
byte segment. All segments listed in the GROUP directive must fit into 64K bytes. This
can be used to combine segments of the same type, or different classes of segments. An

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 743

example follows:

SMALL SYS GROUP DTSEG, STSEG, CDSEG

The ASSUME directive must be changed to make the segment registers point to
the group:

ASSUME CS:SMALL SYS,DS:SMALL SYS,SS:SMALL SYS

The group will be listed in the list file, as shown below:

Segments and Groups:

Name Length Align Combine Class
SMALL SYS GROUP

STSEG e e e e e 0040 PARA NONE

DTSEG e e e e e 0024 PARA NONE

CDSEG e e e e e 005A PARA NONE
INCLUDE

When there is a group of macros written and saved in a separate file, the
INCLUDE directive can be used to bring them into another file. In the program listing
(.Ist file), these macros will be identified by the symbol "C" (or "+" in some versions of
MASM) before each instruction to indicate that they are copied to the present file by the
INCLUDE directive.

LABEL

The LABEL directive allows a given variable or name to be referred to by multi-
ple names. This is often used for multiple definitions of the same variable or name. The
format of the LABEL directive is

name LABEL type

where type may be BYTE, WORD, DWORD, or QWORD. For example, a vari-
able of name DATAL1 is defined as a word and also needs to be accessed as 2 bytes, as
shown in the following:

DATA B LABEL BYTE

DATA1 DW 25F6H
MOV AX, DATAL ;AX=25F6H
MOV BL,DATA B ;BL=F6H
MOV BH,DATA B +1 ;BH=25H

The following shows the LABEL directive being used to allow accessing a 32-bit
data item in 16-bit portions.

DATA 16 LABEL WORD

DATDD 4 DD 4387983FH
MOV AX,DATA 16 ; AX=983FH
MOV DX,DATA 16 + 2 ;DX=4387H

The following shows its use in a JMP instruction to go to a different code seg-
ment.

JMP PROG A

PROG A LABEL FAR

744

INITI: MOV AL, 12H
ouT PORT, AL

In the program above the addresses assigned to the names "PROG A" and
"INITI" are exactly the same. The same function can be achieved by the following:

JMP FARPTR INITI

LENGTH

The LENGTH operator returns the number of items defined by a DUP operand.
See the SIZE directive for an example.

OFFSET

To access the offset address assigned to a variable or a name, one uses the OFF-
SET directive. For example, the OFFSET directive was used in the following example to
get the offset address assigned by the assembler to the variable DATA1:

ORG 5600H
DATAL DW 2345H

MOV SI,OFFSET DATAl ; SI=OFFSET OF DATAl = 5600H

Notice that this has the same result as "LEA SI,DATA1".
ORG (Origin)

The ORG directive is used to assign an offset address for a variable or name. For
example, to force variable DATA1 to be located starting at offset address 0020, one would
write

ORG 0020H
DATAL DW 41F2H

This ensures the offset addresses of 0020 and 0021 with contents 0020H = (F2)
and 0021H = (41).

PAGE

The PAGE directive is used to make the ".Ist" file print in a specific format. The
format of the PAGE directive is

PAGE [lines] ,[columns]

The default listing (meaning that no PAGE directive is coded) will have 66 lines
per page with a maximum of 80 characters per line. This can be changed to 60 and 132
with the directive "PAGE 60,132". The range for number of lines is 10 to 255 and for
columns is 60 to 132. A PAGE directive with no numbers will generate a page break.

PROC and ENDP (Procedure and End Procedure)

Often, a group of Assembly language instructions will be combined into a proce-
dure so that it can be called by another module. The PROC and ENDP directives are used
to indicate the beginning and end of the procedure. For a given procedure the names
assigned to PROC and ENDP must be exactly the same.

namel PROC [attribute]
namel ENDP

There are two choices for the attribute of the PROC: NEAR or FAR. If no attrib-
ute is given, the default is NEAR. When a NEAR procedure is called, only IP is saved
since CS of the called procedure is the same as the calling program. If a FAR procedure

is called, both IP and CS are saved since the code segment of the called procedure is dif-
ferent from that of the calling program.

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 745

PTR (Pointer)

The PTR directive is used to specify the size of the operand. Among the options
for size are BYTE, WORD, DWORD, and QWORD. This directive is used in many dif-
ferent ways, the most common of which are explained below.

1. PTR can be used to allow an override of a previously defined data directive.

DATAL DB 23H,7FH, 99H, 0B2H
DATA2 DW 67F1H
DATA3 DD 222299991
MOV ~ AX, WORD PTR DATAl ;AX=T7F23

MOV BX, WORD PTR DATAl + 2 ;BX,B299H

Although DATA1 was initially defined as DB, it can be accessed using the
WORD PTR directive.

MOV AL, BYTE PTR DATAZ2 ;AL=F1H

In the above code, notice that DATA2 was defined as WORD but it was accessed
as BYTE with the help of BYTE PTR. If this had been coded as "MOV AL,DATA2", it
would generate an error since the sizes of the operands do not match.

MOV AX, WORD PTR DATA3 ;AX=9999H
MOV DX, WORD PTR DATA3 + 2 ;DX=2222H

DATA3 was defined as a 4-byte operand but registers are only 2 bytes wide. The
WORD PTR directive solved that problem.

2. The PTR directive can be used to specify the size of a directive in order to help the
assembler translate the instruction.

INC [DI] ;will cause an error

This instruction was meant to increment the contents of the memory location(s)
pointed at by [DI]. How does the assembler know whether it is a byte operand, word
operand, or doubleword operand? Since it does not know, it will generate an error. To
correct that, use the PTR directive to specify the size of the operand as shown next.

INC BYTE PTR [SI] ;increment a byte pointed by SI

or

INC WORD PTR [SI] ;increment a word pointed by ST

or

INC DWORD PTR [SI] ;increment a doubleword pointed by SI

3. The PTR directive can be used to specify the distance of a jump. The options for the
distance are FAR and NEAR.

JMP FAR PTR INTI ;ensures a 5-byte instruction

INITI: MOV AX,1200

See the LABEL directive to find out how it can be used to achieve the same result.

746

PUBLIC

To inform the assembler that a name or symbol will be referenced by other mod-
ules, it is marked by the PUBLIC directive. If a module is referencing a variable outside
itself, that variable must be declared as EXTRN. Correspondingly, in the module where
the variable is defined, that variable must be declared as PUBLIC in order to allow it to
be referenced by other modules. See the EXTRN directive for examples of the use of both
EXTRN and PUBLIC.

SEG (Segment Address)

The SEG operator is used to access the address of the segment where the name
has been defined.

DATAL DW 2341H

MOV AX,SEG DATAL ; AX=SEGMENT ADDRESS OF DATAL
This is in contrast to the OFFSET directive, which accesses the offset address
instead of the segment.
SEGMENT and ENDS

In full segment definition these two directives are used to indicate the beginning
and the end of the segment. They must have the same name for a given segment defini-
tion. See the following example:

DATSEG SEGMENT

DATAL DB 2FH

DATA2 DW 1200
DATA3 DD 99999999H
DATSEG ENDS

There are several options associated with the SEGMENT directive, as follows:

namel SEGMENT [align] [combine] [class]

namel ENDS

ALIGNMENT: When several assembled modules are linked together, this indi-
cates where the segment is to begin. There are many options, including PARA (paragraph
=16 bytes), WORD, and BYTE. If PARA is chosen, the segment starts at a hex address
divisible by 10H. PARA is the default alignment. In this alignment, if a segment for a
module finished at 00024H, the next segment will start at address 00030H, leaving from
00025 to 0002F unused. If WORD is chosen, the segment is forced to start at a word
boundary. In BYTE alignment, the segment starts at the next byte and no memory is wast-
ed. There is also the PAGE option, which aligns segments along the 100H (256) byte
boundary. While all these options are supported by many assemblers, such as MASM and
TASM, there is another option supported only by assemblers that allow system develop-
ment. This option is AT. The AT option allows the program to assign a physical address.
For example, to burn a program into ROM starting at physical address FO000, code

ROM CODE SEGMENT AT FOOOH

Due to the fact that option AT allows the programmer to specify a physical
address that conflicts with DOS's memory management responsibility, many assemblers
such as MASM will not allow option AT.

COMBINE TYPE: This option is used to merge together all the similar segments
to create one large segment. Among the options widely used are PUBLIC and STACK.
PUBLIC is widely used in code segment definitions when linking more than one module.
This will consolidate all the code segments of the various modules into one large code
segment. If there is only one data segment and that belongs to the main module, there is
no need to define it as PUBLIC since no other module has any data segment to combine
with. However, if other modules have their own data segments, it is recommended that

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 747

they be made PUBLIC to create a single data segment when they are linked. In the
absence of that, the linker would assume that each segment is private and they would not
be combined with other similar segments (codes with codes and data with data). Since
there is only one stack segment, which belongs to the main module, there is no need to
define it as PUBLIC. The STACK option is used only with the stack segment definition
and indicates to the linker that it should combine the user's defined stack with the system
stack to create a single stack for the entire program. This is the stack that is used at run
time (when the CPU is actually executing the program).

CLASS NAME: Indicates to the linker that all segments of the same class should
be placed next to each other by the LINKER. Four class names commonly used are
'CODE', 'DATA', 'STACK', and 'EXTRA'. When this attribute is used in the segment def-
inition, it must be enclosed in single quotes in order to be recognized by the linker.

SHORT

In a direct jump such as "JMP POINT_A", the assembler has to choose either the
2-byte or 3-byte format. In the 2-byte format, one byte is the opcode and the second byte
is the signed number displacement value added to the IP of the instruction immediately
following the JMP. This displacement can be anywhere between —128 and +127. A neg-
ative number indicates a backward JMP and a positive number a forward JMP. In the 3-
byte format the first byte is the opcode and the next two bytes are for the signed number
displacement value, which can range from —32,768 to 32,767. When assembling a pro-
gram, the assembler makes two passes through the program. Certain tasks are done in the
first pass and others are left to the second pass to complete. In the first pass the assem-
bler chooses the 3-byte code for the JMP. After the first pass is complete, it will know the
target address and fill it in during the second pass. If the target address indicates a short
jump (less than 128) bytes away, it fills the last byte with NOP. To inform the assembler
that the target address is no more than 128 bytes away, the SHORT directive can be used.
Using the SHORT directive makes sure that the JMP is a 2-byte instruction and not 3-byte
with 1 byte as NOP code. The 2-byte JMP requires 1 byte less memory and is executed
faster.

SIZE

The size operator returns the total number of bytes occupied by a name. The three
directives LENGTH, SIZE, and TYPE are somewhat related. Below is a description of
each one using the following set of data defined in a data segment:

DATA1 DQ .
DATA2 DW .
DATA3 DB 20 DUP (?)
DATA4 DW 100 DUP (?)
DATAS DD 10 DUP (?)

TYPE allows one to know the storage allocation directive for a given variable by
providing the number of bytes according to the following table:

bytes

1 DB
2 DW
4 DD
8 DO
10 DT

For example:

MOV BX, TYPE DATA2 ;BX=2
MOV DX, TYPE DATAl ; DX=8
MOV AX, TYPE DATA3 ;AX=1
MOV CX, TYPE DATAS5 ;CX=4

When a DUP is used to define the number of entries for a given variable, the
LENGTH directive can be used to get that number.

748

MOV CX, LENGTH DATA4 ;CX=64H (100 DECIMAL)
MOV AX, LENGTH DATA3 ;AX=14H (20 DECIMAL)
MOV DX, LENGTH DATAS ; DX=0A (10 DECIMAL)

If the defined variable does not have any DUP in it, the LENGTH is assumed to
be 1.

MOV BX, LENGTH DATAl ;BX=1

SIZE is used to determine the total number of bytes allocated for a variable that
has been defined with the DUP directive. In reality the SIZE directive basically provides
the product of the TYPE times the LENGTH.

MOV DX, SIZE DATA4 ; DX=C8H=200 (100 x 2=200)
MOV ~ CX, SIZE DATAS ;CX=28H=40 (4 x 10=40)
STRUC (Structure)

The STRUC directive indicates the beginning of a structure definition. It ends
with an ENDS directive, whose label matches the STRUC label. Although the same
mnemonic ENDS is used for end of segment and end of structure, the assembler knows
which is meant by the context. A structure is a collection of data types that can be
accessed either collectively by the structure name or individually by the labels of the data
types within the structure. A structure type must first be defined and then variables in the
data segment may be allocated as that structure type. Looking at the following example,
the data directives between STRUC and ENDS declare what structure ASC_AREA looks
like. No memory is allocated for such a structure definition. Immediately below the
structure definition is the label ASC_INPUT, which is declared to be of type ASC_AREA.
Memory is allocated for the variable ASC INPUT. Notice in the code segment that
ASC_INPUT can be accessed either in its entirety or by its component parts. It is
accessed as a whole unit in "MOV DX,OFFSET ASC_INPUT". Its component parts are
accessed by the variable name followed by a period, then the component's name. For
example, "MOV BL,ASC INPUT.ACT_LEN" accesses the actual length field of

ASC _INPUT.

;from the data segment:

ASC AREA STRUC ;defines struc for string
input

MAX LEN DB 6 ; maximum length of input string
ACT LEN DB ? ; actual length of input string
ASC NUM DB 6 DUP (?) ; 1nput string

ASC AREA ENDS ;end struc definition

ASC _INPUT ASC _AREA <> ;allocates memory for struc

;from the code segment:

GET ASC: MOV AH, OAH

MOV DX,O0FFSET ASC INPUT
INT 21H

MOV SI,OFFSET ASC INPUT.ASC NUM ;SI points to ASCII num
MOV BL,ASC INPUT.ACT LEN ;BL holds string length

TITLE

The TITLE directive instructs the assembler to print the title of the program on
top of each page of the ".Ist" file. What comes after the TITLE pseudo-instruction is up

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 749

to the programmer, but it is common practice to put the name of the program as stored on
the disk right after the TITLE pseudo-instruction and then a brief description of the func-
tion of the program. Whatever is placed after the TITLE pseudo-instruction cannot be
more than 60 ASCII characters (letters, numbers, spaces, punctuation).

TYPE

The TYPE operator returns the number of bytes reserved for the named data
object. See the SIZE directive for examples of its use.

SECTION C.2: RULES FOR LABELS AND RESERVED
NAMES

Labels in 80x86 Assembly language for MASM 5.1 and higher must follow these
rules:

1. Names can be composed of:
alphabetic characters: A—Z and a—z
digits: 0-9
SpeCIal CharaCterS: "?" H.H H@" "_" "$H

2. Names must begin with an alphabetic or special character. Names cannot begin with
a digit.
3. Names can be up to 31 characters long.

4. The special character "." can only be used as the first character.

5. Uppercase and lowercase are treated the same. "NAMEI1" is treated the same as
"Namel" and "namel".

Assembly language programs have five types of labels or names:

1. Code labels, which give symbolic names to instructions so that other instructions
(such as jumps) may refer to them

2. Procedure labels, which assign a name to a procedure
3. Segment labels, which assign a name to a segment
4. Data labels, which give names to data items

5. Labels created with the LABEL directive
Code labels

These labels will be followed by a colon and have the type NEAR. This enables
other instructions within the code segment to refer to the instruction. The labels can be
on the same line as the instruction:

ADD LP: ADD AL,[BX] ;label is on same line as the instruction
LOOP ADD LP
or on a line by themselves:

ADD LP: ;label is on a line by itself

750

ADD AL,[BX] ;ADD LP refers to this instruction

LOOP ADD LP

Procedure labels

These labels assign a symbolic name to a procedure. The label can be NEAR or
FAR. When using full segment definition, the default type is NEAR. When using sim-
plified segment definition, the type will be NEAR for compact or small models but will
be FAR for medium, large, and huge models. For more information on procedures, see
PROC in Section C.1.

Segment labels

These labels give symbolic names to segments. The name must be the same in the
SEGMENT and ENDS directives. See SEGMENT in Section C.1 for more information.

Example:

DAT SG SEGMENT

SUM DW ?
DAT SG ENDS

Data labels

These labels give symbolic names to data items. This allows them to be accessed
by instructions. Directives DB, DW, DD, DQ, and DT are used to allocate data.

Examples:

DATAL DB 43H
DATA2 DB F2H
SUM DW ?

Labels defined with the LABEL directive

The LABEL directive can be used to redefine a label. See LABEL in Section C.1
for more information.

Reserved Names

The following is a list of reserved words in 80x86 Assembly language program-
ming. These words cannot be used as user-defined labels or variable names.

Register Names:

AH AL AX BH BL BP BX CH CL CS CX DH
DI DL DS DX ES ST SP SS

Instructions:

AAA AAD AAM AAS ADC ADD
AND CALL CBW CLC CLD CLI
cMC CMP CMPS CWD DAA DAS
DEC DIV ESC HLT IDIV IMUL
IN INC INT INTO IRET JA
JAE JB JBE JCXZ JE JG
JGE JL JLE JMP JNA JNAE
JNB JNBE JNE JNG JINGE JNL
JNLE JNO JNP JNS JNZ Jo
JP JPE JPO Js JZ LAHF
LDS LEA LES LOCK LODS LOOP
LOOPE LOOPNE LOOPNZ LOOPZ MOV MOVS
MUL NEG NIL NOP NOT OR
OUT POP POPF PUSH PUSHF RCL
RCR REP REPE REPNE REPNZ REPZ
APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES 751

RET
SBB
STI
XLAT

ROL
SCAS
STOS
XOR

ROR
SHL
SUB

SAHF
SHR
TEST

Assembler operators and directives:

$ *
ALIGN
DD

DW
ENDM
EXTRN
HIGH
IFIDN

INCLUDELIB

LINE
MOD
ORG
QWORD
SHORT
THIS
.286
.8086
.DATA
.ERRDEF
.ERRNZ
.MODEL
.STACK

+ —_
ASSUME
DF
DWORD
ENDS
FAR
IF
IFNB
IRP
LOCAL
NAME
PAGE
RECORD
SIZE
TITLE
.286P
.8087
.DATA?
.ERRDIF
.FARDATA
s0UT
. TFCOND

BYTE
DOSSEG
DUP

EQ
FWORD
IFB
IFNDEF
IRPC
LOW

NE
PROC
REPT
STACK
TYPE
.287
.ALPHA
.ERR
.ERRE
.FARDATA?
.RADIX
.TYPE

/

COMM
DO
ELSE
EQU
GE
IFDEF
IFl
LABEL
LT
NEAR
PTR
REPTRD
STRUC
WIDTH
.386
.CODE
.ERR1
.ERRIDN
.LALL
.SALL
.XALL

SAL
STC
WAIT

[
COMMENT
DS
END
EVEN
GROUP
IFDIF
IF2
LE
MACRO
NOTHING
PUBLIC
SEG
SUBTTL
WORD
.386P
.CONST
.ERR2
.ERRNB
.LFCOND
.SEQ
. XCREF

SAR
STD
XCHG

]

DB

DT
ENDIF
EXITM
GT

IFE
INCLUDE
LENGTH
MASK
OFFSET
PURGE
SEGMENT
TBYTE
.186
.387
.CREF
.ERRB
.ERRNDEF
.LIST
.SFCOND
.XLIST

752

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

